Friday 17 February 2017

Autoregressive Moving Average Erklärt

Zweck: Überprüfung der Zufallszahlen Autokorrelationsdiagramme (Box und Jenkins, S. 28-32) sind ein gängiges Werkzeug zur Überprüfung der Zufälligkeit in einem Datensatz. Diese Zufälligkeit wird durch Berechnen von Autokorrelationen für Datenwerte bei variierenden Zeitverzögerungen ermittelt. Wenn sie zufällig sind, sollten solche Autokorrelationen nahezu null für irgendwelche und alle zeitlichen Verzögerungen sein. Wenn nicht-zufällig, dann werden eine oder mehrere der Autokorrelationen signifikant ungleich Null sein. Darüber hinaus werden Autokorrelationsdiagramme in der Modellidentifikationsstufe für autoregressive, gleitende mittlere Zeitreihenmodelle von Box-Jenkins verwendet. Autokorrelation ist nur ein Maß der Zufälligkeit Beachten Sie, dass unkorreliert nicht unbedingt zufällig bedeutet. Daten mit signifikanter Autokorrelation sind nicht zufällig. Daten, die keine signifikante Autokorrelation aufweisen, können jedoch auf andere Weise noch nicht-zufällig auftreten. Autokorrelation ist nur ein Maß der Zufälligkeit. Im Rahmen der Modellvalidierung (die der primäre Typ der Zufälligkeit ist, die wir im Handbuch behandeln) ist die Überprüfung auf Autokorrelation typischerweise ein ausreichender Test der Zufälligkeit, da die Residuen von schlechten Anpassungsmodellen dazu tendieren, nicht-subtile Zufälligkeit zu zeigen. Einige Anwendungen erfordern jedoch eine strengere Bestimmung der Zufälligkeit. In diesen Fällen wird eine Batterie von Tests, die eine Überprüfung auf Autokorrelation einschließen kann, angewandt, da Daten in vielen verschiedenen und oft subtilen Arten nicht-zufällig sein können. Ein Beispiel dafür, wo eine strengere Überprüfung der Zufälligkeit erforderlich ist, wäre das Testen von Zufallszahlengeneratoren. Beispiel-Diagramm: Autokorrelationen sollten nahe-Null für die Zufälligkeit sein. Dies ist bei diesem Beispiel nicht der Fall, so dass die Zufallsannahme fehlschlägt. Dieses Beispiel-Autokorrelationsdiagramm zeigt, dass die Zeitreihe nicht zufällig ist, sondern vielmehr einen hohen Grad an Autokorrelation zwischen benachbarten und nahe benachbarten Beobachtungen aufweist. Definition: r (h) versus h Autokorrelationsdiagramme werden durch vertikale Achse gebildet: Autokorrelationskoeffizient, wobei C h die Autokovarianzfunktion ist und C 0 die Varianzfunktion ist. Beachten Sie, dass R h zwischen -1 und 1 liegt Folgende Formel für die Autokovarianz-Funktion Obwohl diese Definition weniger Bias aufweist, weist die (1 N) - Formulierung einige wünschenswerte statistische Eigenschaften auf und ist die am häufigsten in der Statistikliteratur verwendete Form. Siehe Seiten 20 und 49-50 in Chatfield für Details. Horizontale Achse: Zeitverzögerung h (h 1, 2, 3.) Die obige Zeile enthält auch mehrere horizontale Bezugslinien. Die Mittellinie ist auf Null. Die anderen vier Zeilen sind 95 und 99 Konfidenzbänder. Beachten Sie, dass es zwei verschiedene Formeln zur Erzeugung der Vertrauensbänder gibt. Wenn das Autokorrelationsdiagramm verwendet wird, um auf Zufälligkeit zu testen (dh es gibt keine Zeitabhängigkeit in den Daten), wird die folgende Formel empfohlen: wobei N die Stichprobengröße ist, z die kumulative Verteilungsfunktion der Standardnormalverteilung und (alpha ) Ist das Signifikanzniveau. In diesem Fall haben die Vertrauensbänder eine feste Breite, die von der Probengröße abhängt. Dies ist die Formel, die verwendet wurde, um die Vertrauensbänder im obigen Diagramm zu erzeugen. Autokorrelationsdiagramme werden auch in der Modellidentifikationsstufe für die Montage von ARIMA-Modellen verwendet. In diesem Fall wird für die Daten ein gleitendes Durchschnittsmodell angenommen und die folgenden Konfidenzbänder erzeugt: wobei k die Verzögerung, N die Stichprobengröße, z die kumulative Verteilungsfunktion der Standardnormalverteilung und (alpha) ist Das Signifikanzniveau. In diesem Fall nehmen die Vertrauensbänder zu, wenn die Verzögerung zunimmt. Das Autokorrelationsdiagramm kann Antworten auf die folgenden Fragen liefern: Sind die Daten zufällig Ist eine Beobachtung, die mit einer angrenzenden Beobachtung in Beziehung steht, ist eine Beobachtung, die mit einer zweimal entfernten Beobachtung zusammenhängt (usw.) Ist die beobachtete Zeitreihe weißes Rauschen Ist die beobachtete Zeitreihe sinusförmig Ist die beobachtete Zeitreihe autoregressiv Was ist ein geeignetes Modell für die beobachtete Zeitreihe Ist das Modell gültig und ausreichend Ist die Formel s ssqrt gültig Wichtigkeit: Sicherstellung der Gültigkeit von technischen Schlussfolgerungen Zufall (zusammen mit festem Modell, fester Variation und fester Verteilung) ist Eine der vier Annahmen, die typischerweise allen Messprozessen zugrunde liegen. Die Zufallsannahme ist aus den folgenden drei Gründen von entscheidender Bedeutung: Die meisten standardmäßigen statistischen Tests hängen von der Zufälligkeit ab. Die Gültigkeit der Testresultate steht in direktem Zusammenhang mit der Gültigkeit der Zufallsannahme. Viele häufig verwendete statistische Formeln hängen von der Zufallsannahme ab, wobei die häufigste Formel die Formel zur Bestimmung der Standardabweichung des Stichprobenmittels ist: wobei s die Standardabweichung der Daten ist. Obwohl stark verwendet, sind die Ergebnisse aus der Verwendung dieser Formel ohne Wert, es sei denn, die Zufälligkeitsannahme gilt. Für univariate Daten ist das Standardmodell Wenn die Daten nicht zufällig sind, ist dieses Modell falsch und ungültig, und die Schätzungen für die Parameter (wie die Konstante) werden unsinnig und ungültig. Kurz, wenn der Analytiker nicht auf Zufälligkeit prüft, dann wird die Gültigkeit vieler statistischer Schlüsse verdächtig. Das Autokorrelationsdiagramm ist eine hervorragende Möglichkeit, auf solche Zufälligkeit zu prüfen. RIMA steht für Autoregressive Integrated Moving Average Modelle. Univariate (Einzelvektor) ARIMA ist eine Prognosemethode, die die zukünftigen Werte einer Serie, die vollständig auf ihrer eigenen Trägheit basiert, projiziert. Seine Hauptanwendung liegt im Bereich der kurzfristigen Prognose mit mindestens 40 historischen Datenpunkten. Es funktioniert am besten, wenn Ihre Daten eine stabile oder konsistente Muster im Laufe der Zeit mit einem Minimum an Ausreißern zeigt. Manchmal nennt man Box-Jenkins (nach den ursprünglichen Autoren), ARIMA ist in der Regel überlegen exponentielle Glättung Techniken, wenn die Daten relativ lange und die Korrelation zwischen vergangenen Beobachtungen ist stabil. Wenn die Daten kurz oder stark flüchtig sind, kann eine gewisse Glättungsmethode besser ablaufen. Wenn Sie nicht über mindestens 38 Datenpunkte verfügen, sollten Sie eine andere Methode als ARIMA betrachten. Der erste Schritt bei der Anwendung der ARIMA-Methodik ist die Überprüfung der Stationarität. Stationarität impliziert, dass die Reihe auf einem ziemlich konstanten Niveau über Zeit bleibt. Wenn ein Trend besteht, wie in den meisten wirtschaftlichen oder geschäftlichen Anwendungen, dann sind Ihre Daten nicht stationär. Die Daten sollten auch eine konstante Varianz in ihren Schwankungen im Laufe der Zeit zeigen. Dies ist leicht zu sehen mit einer Serie, die stark saisonal und wächst mit einer schnelleren Rate. In einem solchen Fall werden die Höhen und Tiefen der Saisonalität im Laufe der Zeit dramatischer. Ohne dass diese Stationaritätsbedingungen erfüllt sind, können viele der mit dem Prozess verbundenen Berechnungen nicht berechnet werden. Wenn eine grafische Darstellung der Daten Nichtstationarität anzeigt, dann sollten Sie die Serie unterscheiden. Die Differenzierung ist eine hervorragende Möglichkeit, eine nichtstationäre Serie in eine stationäre zu transformieren. Dies geschieht durch Subtrahieren der Beobachtung in der aktuellen Periode von der vorherigen. Wenn diese Transformation nur einmal zu einer Reihe erfolgt, sagen Sie, dass die Daten zuerst unterschieden wurden. Dieser Prozess im Wesentlichen eliminiert den Trend, wenn Ihre Serie wächst mit einer ziemlich konstanten Rate. Wenn es mit steigender Rate wächst, können Sie das gleiche Verfahren anwenden und die Daten erneut differenzieren. Ihre Daten würden dann zweite differenziert werden. Autokorrelationen sind Zahlenwerte, die angeben, wie sich eine Datenreihe mit der Zeit auf sich bezieht. Genauer gesagt misst es, wie stark Datenwerte bei einer bestimmten Anzahl von Perioden auseinander über die Zeit miteinander korreliert werden. Die Anzahl der Perioden wird in der Regel als Verzögerung bezeichnet. Zum Beispiel mißt eine Autokorrelation bei Verzögerung 1, wie die Werte 1 Periode auseinander in der Reihe miteinander korreliert sind. Eine Autokorrelation bei Verzögerung 2 misst, wie die Daten, die zwei Perioden voneinander getrennt sind, über die gesamte Reihe miteinander korrelieren. Autokorrelationen können im Bereich von 1 bis -1 liegen. Ein Wert nahe 1 gibt eine hohe positive Korrelation an, während ein Wert nahe -1 impliziert eine hohe negative Korrelation. Diese Maßnahmen werden meist durch grafische Darstellungen, sogenannte Korrelagramme, ausgewertet. Ein Korrelationsdiagramm zeigt die Autokorrelationswerte für eine gegebene Reihe bei unterschiedlichen Verzögerungen. Dies wird als Autokorrelationsfunktion bezeichnet und ist bei der ARIMA-Methode sehr wichtig. Die ARIMA-Methodik versucht, die Bewegungen in einer stationären Zeitreihe als Funktion der so genannten autoregressiven und gleitenden Durchschnittsparameter zu beschreiben. Diese werden als AR-Parameter (autoregessiv) und MA-Parameter (gleitende Mittelwerte) bezeichnet. Ein AR-Modell mit nur einem Parameter kann als geschrieben werden. X (t) A (1) X (t-1) E (t) wobei X (t) Zeitreihen A (1) der autoregressive Parameter der Ordnung 1 X (t-1) (T) der Fehlerterm des Modells Dies bedeutet einfach, dass jeder gegebene Wert X (t) durch eine Funktion seines vorherigen Wertes X (t-1) plus einen unerklärlichen Zufallsfehler E (t) erklärt werden kann. Wenn der geschätzte Wert von A (1) 0,30 betrug, dann wäre der aktuelle Wert der Reihe mit 30 seines vorherigen Wertes 1 verknüpft. Natürlich könnte die Serie auf mehr als nur einen vergangenen Wert bezogen werden. Zum Beispiel ist X (t) A (1) X (t-1) A (2) X (t-2) E (t) Dies zeigt an, dass der aktuelle Wert der Reihe eine Kombination der beiden unmittelbar vorhergehenden Werte ist, X (t-1) und X (t-2) zuzüglich eines Zufallsfehlers E (t). Unser Modell ist nun ein autoregressives Modell der Ordnung 2. Moving Average Models: Eine zweite Art von Box-Jenkins-Modell wird als gleitendes Durchschnittsmodell bezeichnet. Obwohl diese Modelle dem AR-Modell sehr ähnlich sind, ist das Konzept dahinter ganz anders. Bewegliche Durchschnittsparameter beziehen sich auf das, was in der Periode t stattfindet, nur auf die zufälligen Fehler, die in vergangenen Zeitperioden aufgetreten sind, dh E (t-1), E (t-2) usw. anstatt auf X (t-1), X T-2), (Xt-3) wie in den autoregressiven Ansätzen. Ein gleitendes Durchschnittsmodell mit einem MA-Begriff kann wie folgt geschrieben werden. X (t) - B (1) E (t-1) E (t) Der Begriff B (1) wird als MA der Ordnung 1 bezeichnet. Das negative Vorzeichen vor dem Parameter wird nur für Konventionen verwendet und in der Regel ausgedruckt Automatisch von den meisten Computerprogrammen. Das obige Modell sagt einfach, dass jeder gegebene Wert von X (t) direkt nur mit dem Zufallsfehler in der vorherigen Periode E (t-1) und mit dem aktuellen Fehlerterm E (t) zusammenhängt. Wie im Fall von autoregressiven Modellen können die gleitenden Durchschnittsmodelle auf übergeordnete Strukturen mit unterschiedlichen Kombinationen und gleitenden mittleren Längen erweitert werden. Die ARIMA-Methodik erlaubt es auch, Modelle zu erstellen, die sowohl autoregressive als auch gleitende Durchschnittsparameter zusammenführen. Diese Modelle werden oft als gemischte Modelle bezeichnet. Obwohl dies für eine kompliziertere Prognose-Tool macht, kann die Struktur tatsächlich simulieren die Serie besser und produzieren eine genauere Prognose. Pure Modelle implizieren, dass die Struktur nur aus AR oder MA-Parameter besteht - nicht beides. Die Modelle, die von diesem Ansatz entwickelt werden, werden in der Regel als ARIMA-Modelle bezeichnet, da sie eine Kombination aus autoregressiver (AR), Integration (I) verwenden, die sich auf den umgekehrten Prozess der Differenzierung bezieht, um die Prognose zu erzeugen. Ein ARIMA-Modell wird üblicherweise als ARIMA (p, d, q) angegeben. Dies ist die Reihenfolge der autoregressiven Komponenten (p), der Anzahl der differenzierenden Operatoren (d) und der höchsten Ordnung des gleitenden Mittelwerts. Beispielsweise bedeutet ARIMA (2,1,1), dass Sie ein autoregressives Modell zweiter Ordnung mit einer ersten gleitenden Durchschnittskomponente haben, deren Serie einmal differenziert wurde, um die Stationarität zu induzieren. Auswahl der richtigen Spezifikation: Das Hauptproblem in der klassischen Box-Jenkins versucht zu entscheiden, welche ARIMA-Spezifikation zu verwenden - i. e. Wie viele AR - und / oder MA-Parameter einzuschließen sind. Dies ist, was viel von Box-Jenkings 1976 dem Identifikationsprozeß gewidmet wurde. Es hing von der graphischen und numerischen Auswertung der Stichprobenautokorrelation und der partiellen Autokorrelationsfunktionen ab. Nun, für Ihre grundlegenden Modelle, ist die Aufgabe nicht allzu schwierig. Jeder hat Autokorrelationsfunktionen, die eine bestimmte Weise aussehen. Allerdings, wenn Sie gehen in der Komplexität, die Muster sind nicht so leicht zu erkennen. Um es schwieriger zu machen, stellen Ihre Daten nur eine Probe des zugrundeliegenden Prozesses dar. Das bedeutet, dass Stichprobenfehler (Ausreißer, Messfehler etc.) den theoretischen Identifikationsprozess verzerren können. Daher ist die traditionelle ARIMA-Modellierung eher eine Kunst als eine Wissenschaft. Autoregressiver integrierter Moving Average - ARIMA DEFINITION des autoregressiven integrierten Moving Average - ARIMA Ein statistisches Analysemodell, das Zeitreihendaten verwendet, um zukünftige Trends vorherzusagen. Es ist eine Form der Regressionsanalyse, die künftige Bewegungen entlang des scheinbar zufälligen Weges der Bestände und des Finanzmarktes vorhersagen will, indem sie die Unterschiede zwischen den Werten in der Reihe untersucht, anstatt die tatsächlichen Datenwerte zu verwenden. Verzögerungen der differenzierten Serien werden als autoregressiv bezeichnet und Verzögerungen innerhalb prognostizierter Daten werden als gleitender Durchschnitt bezeichnet. BREAKING DOWN Autoregressiver Integrierter Moving Average - ARIMA Dieser Modelltyp wird im Allgemeinen als ARIMA (p, d, q) bezeichnet, wobei die Ganzzahlen auf den autoregressiven Bereich bezogen sind. Integrierten und gleitenden mittleren Teile des Datensatzes. ARIMA-Modellierung kann Trends, Saisonalität berücksichtigen. Zyklen, Fehlern und nichtstationären Aspekten eines Datensatzes bei Prognosen.


No comments:

Post a Comment